1. Altomare, C., et al. (2014) "A hybrid numerical model for coastal engineering problems." Proc. 34th Conf. Coast. Eng. Seoul, Korea, 2014 34: [ DOI:10.9753/icce.v34.waves.60] 2. Batchelor, G.K. (1967) "An Introduction to Fluid Dynamics." Book 631. 3. Boussinesq, J. (1872) "Théorie des ondes et de remous qui se propagent…." Journal de Mathématiques Pures et Appliquées, Vol. 17, pp. 55108. 4. Chan IC, Liu PLF (2012) On the runup of long waves on a plane beach. J Geophys Res 117:C08006. [ DOI:10.1029/2012JC007994] 5. Crespo, A.J.C., GomezGesteira, M., and Dalrymple, R.A. (2007) "Boundary conditions generated by dynamic particles in SPH methods." Computers, Materials, & Continua, Vol. 5, No. 3, pp. 173184. 6. Crespo, A. J, GomezGesteira, M., and Dalrymple, R.A. (2008) "Modeling Dam Break Behavior over a Wet Bed by a SPH Technique." Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 134, No. 6, pp. 330320. [ DOI:10.1061/(ASCE)0733950X(2008)134:6(313)] 7. Crespo, A.J.C., et al (2015) "DualSPHysics: Opensource parallel CFD solver based on Smoothed Particle Hydrodynamics (SPH)." Computer Physics Communications, Vol. 187, pp. 204216. [ DOI:10.1016/j.cpc.2014.10.004] 8. Dalrymple, R.A., and Rogers, B.D. (2006) "Numerical modeling of water waves with the SPH method." Coastal Engineering, Vol. 53, No (23), pp. 141147. [ DOI:10.1016/j.coastaleng.2005.10.004] 9. Dao, M.H., Xu, H., Chan, E.S., and Tkalich, P. (2013) "Modelling of tsunamilike wave runup, breaking and impact on a vertical wall by SPH method." Nat Hazards Earth Syst Sci 13:34573467 [ DOI:10.5194/nhess1334572013] 10. Gingold, R.A., and Monaghan, J.J. (1977) "Smoothed particle hydrodynamics: theory and application to nonspherical stars." Monthly Notices of the Royal Astronomical Society, Vol. 181, pp. 375389. [ DOI:10.1093/mnras/181.3.375] 11. GomezGesteira, M., and Dalrymple, R.A. (2004) "Using a ThreeDimensional Smoothed Particle Hydrodynamics Method for Wave Impact on a Tall Structure." Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 130, No. 2, pp. 6369. [ DOI:10.1061/(ASCE)0733950X(2004)130:2(63)] 12. GomezGesteira, M., et al. (2005) "Green water overtopping analyzed with a SPH model." Ocean Engineering, Vol. 32, pp. 223238. [ DOI:10.1016/j.oceaneng.2004.08.003] 13. GomezGesteira, M., et al. (2012) "SPHysicsdevelopment of a freesurface fluid solverPart 1: Theory and formulations." Computers & Geosciences, Vol. 48, pp. 289299. [ DOI:10.1016/j.cageo.2012.02.029] 14. Goring, D. (1978) "Tsunamisthe propagation of long waves onto a shelf." W. M. Keck Laboratory of Hydraulics and Water Resources, California Institute of Technology, Pasadena, CA., Report No. KHR38. 15. Goring, D., and Raichlen, F. (1980) "The Generation Of Long Waves In The Laboratory." Coast. Eng. Proc., Vol. 1, pp. 430443. [ DOI:10.1061/9780872622647.047] 16. Gotoh, H., Shibihara, T., and Sakai, T. (2001) "Subparticlescale model for the MPS method  Lagrangian flow model for hydraulic engineering." Computational Fluid Dynamics Journal, Vol. 9 (4), pp. 339347. 17. Gotoh, H., Shao S., and Memita, T. (2004) "SPHLES model for numerical investigation of wave interaction with partially immersed breakwater." Coastal Engineering Journal, Vol. 46, pp. 3963. [ DOI:10.1142/S0578563404000872] 18. Gotoh, H., Okayasu, A., and Watanabe, Y. (2013) "Computational wave dynamics." World Scientific Publishing Co, p 234. ISBN: 9789814449700 [ DOI:10.1142/8714] 19. Gotoh, H., Khayyer, A., Ikari, H., Arikawa, T., Shimosako, K. (2014) "On enhancement of Incompressible SPH method for simulation of violent sloshing flows", Applied Ocean Research, Vol. 46, pp. 104115, ISSN 01411187. [ DOI:10.1016/j.apor.2014.02.005] 20. Grilli, S.T., Svendsen, I.A., and Subramanya, R. (1997) "Breaking Criterion and Characteristics for Solitary Wave on Slopes." Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 123, No. 3, pp. 102112. [ DOI:10.1061/(ASCE)0733950X(1997)123:3(102)] 21. Hammack, J.L. (1973) "A note on tsunamis: their generation and propagation in an ocean of uniform depth." Journal of Fluid Mechanics, Vol. 60, No. 4, pp. 769799. [ DOI:10.1017/S0022112073000479] 22. Herault, A. (2010) "SPH on GPU with CUDA." Journal of Hydraulic Research, Vol. 48, pp. 7479. [ DOI:10.1080/00221686.2010.9641247] 23. Kanoglu, U., and Synolakis, C.E. (1998) "Long wave runup on piecewise linear topographies." Journal of Fluid Mechanics, Vol. 374, pp. 128. [ DOI:10.1017/S0022112098002468] 24. Khayyer, A., Gotoh, H., Shao, S. (2009) "Enhanced predictions of wave impact pressure by improved incompressible SPH methods." Applied Ocean Research, Vol. 31 (2), pp. 111131, ISSN 01411187. [ DOI:10.1016/j.apor.2009.06.003] 25. Kim, S.K., Liu, P.L.F., and Liggett, J.A. (1983) "Boundary integral equation solutions for solitary wave generation, propagation and runup." Coastal Engineering, Vol. 7, pp. 299317. [ DOI:10.1016/03783839(83)900017] 26. Laitone, E.V. (1963) "Higher approximation to nonlinear water waves and the limiting heights of cnoidal, solitary, and Stokes' waves." Beach Erosion Board, U.S. Department of the Army, Corps of Engineers, Technical Memorandum No. 133. 27. Lee, E.S. (2009) "Application of weakly compressible and truly incompressible SPH to 3D water collapse in waterworks." Journal of Hydraulic Research, Vol. 48, pp. 5060. [ DOI:10.3826/jhr.2010.0003] 28. Liang, D., et al. (2013) "Comparison between Boussinesq and shallowwater models in predicting solitary wave runup on plane beaches." Coastal Engineering Journal, Vol. 55, No. 04, 1350014. [ DOI:10.1142/S0578563413500149] 29. Lo, E.Y.M., and Shao, S. (2002) "Simulation of nearshore solitary wave mechanics by an incompressible SPH method." Applied Ocean Research. 24, 275286. [ DOI:10.1016/S01411187(03)000026] 30. Lopez, D., Marivela, R., and Garrote, L. (2010) "Smoothed particle hydrodynamics model applied to hydraulic structures: a hydraulic jump test case." Journal of Hydraulic Research, Vol. 48, pp. 142158. [ DOI:10.1080/00221686.2010.9641255] 31. Lucy, L.B. (1977) "A numerical approach to the testing of the fission hypothesis." Astronomical Journal, Vol. 82, pp. 10131024. [ DOI:10.1086/112164] 32. Lynett, P.J., Wu, T.R., and Liu, P.L.F. (2002) "Modeling wave runup with depthintegrated equations." Coastal Engineering, Vol. 46, pp. 89107. [ DOI:10.1016/S03783839(02)000431] 33. Lynett, P.J. (2007) "Effect of a Shallow Water Obstruction on Long Wave Runup and Overland Flow Velocity." Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 133, pp. 455462. [ DOI:10.1061/(ASCE)0733950X(2007)133:6(455)] 34. Madsen PA, Fuhrman DR, Schaffer HA (2008) On the solitary wave paradigm for tsunamis. J Geophys Res Ocean. [ DOI:10.1029/2008JC004932] 35. McCowan, J. (1891) "On the Solitary Wave," London, Edinburgh, and Dublin Philosophical Magazine, Vol. 32, pp. 4558. [ DOI:10.1080/14786449108621390] 36. Monaghan, J.J. (1994) "Simulating free surface flows with SPH." Journal of Computational Physics. Vol. 110, No. 2, pp. 399406. [ DOI:10.1006/jcph.1994.1034] 37. Monaghan, J.J., and Kos, A. (1999) "Solitary Waves on a Cretan Beach." Journal of Waterway, Port, Coastal, and Ocean Engineering. 125, pp. 145155. [ DOI:10.1061/(ASCE)0733950X(1999)125:3(145)] 38. Oger, G., et al. (2006) "Twodimensional SPH simulations of wedge water entries." Journal of Computational Physics, Vol. 213, pp. 803822. [ DOI:10.1016/j.jcp.2005.09.004] 39. Rogers, B.D., and Dalrymple, R.A. (2008) "SPH modeling of tsunami waves." Adv. Coast. Ocean Eng. 10, 75100. [ DOI:10.1142/9789812790910_0003] 40. Russell, J. (1844) "Report on waves." Fourteenth Meet. B. Assoc. Adv. Sci. 1, 311. 41. Shao, S. (2005) "SPH simulation of solitary wave interaction with a curtaintype breakwater." Journal of Hydraulic Research, Vol. 48, pp. 366375. [ DOI:10.1080/00221680509500132] 42. Schimmels S, Sriram V, Didenkulova I (2016) Tsunami generation in a large scale experimental facility. Coast Eng 110:3241. [ DOI:10.1016/j.coastaleng.2015.12.005] 43. StGermain, P., et al. (2014) "SmoothedParticle Hydrodynamics Numerical Modeling of Structures Impacted by Tsunami Bores." J. Waterw. Port, Coastal, Ocean Eng. 140 (2014) 6681. [ DOI:10.1061/(ASCE)WW.19435460.0000225] 44. Svendsen, I.A. (1974) "Cnoidal waves over a gently sloping bottom." Ph. D. Thesis, Institute of Hydrodynamics and Hydraulic Engineering, Technical University of Denmark. 45. Synolakis, C.E. (1987) "The runup of solitary waves." Journal of Fluid Mechanics, Vol. 185, pp. 523545. [ DOI:10.1017/S002211208700329X] 46. Synolakis, C.E., et al. (2008) "Validation and verification of tsunami numerical models." Pure and Applied Geophysics, Vol. 165, pp. 21972228. [ DOI:10.1007/s000240040427y] 47. Synolakis, C.E., and Kanoglu, U. (2009) "Tsunami hydrodynamic modeling: standards and guidelines." Nonlinear wave dynamics, Lynett, P. J., Ed., World Scientific, Singapore, pp. 127145. [ DOI:10.1142/9789812709042_0006] 48. Wei, Z., et al. (2015) "SPH modeling of dynamic impact of tsunami bore on bridge piers." Coastal Engineering, Vol. 104, pp. 2642. [ DOI:10.1016/j.coastaleng.2015.06.008] 49. Weiss, R., et al. (2010) "Threedimensional modeling of longwave runup: simulation of tsunami inundation with GPUSPHYSICS." Coastal Eng. Proc., 1(32), 8. [ DOI:10.9753/icce.v32.currents.8] 50. Wendland, H. (1995) "Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree." Advances in Computational Mathematics, Vol. 4, No. 1, pp. 389396. [ DOI:10.1007/BF02123482] 51. Xie, J., Nistor, I., and Murty, T. (2012) "A corrected 3D SPH method for breaking tsunami wave modelling." Nat Hazards 60:81100. [ DOI:10.1007/s110690119954x] 52. Zheng, X., Lv, X., Ma, Q., Duan, W., Khayyer, A., Shao, S. (2017) "An improved solid boundary treatment for wavefloat interactions using ISPH method." International Journal of Naval Architecture and Ocean Engineering, ISSN 20926782. 53. Zelt, J.A. (1991) "The runup of nonbreaking and breaking solitary waves." Coastal Engineering, Vol. 15, pp. 205246. [ DOI:10.1016/03783839(91)90003Y]
