[صفحه اصلی ]   [Archive]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
:: دوره 4، شماره 14 - ( 7-1392 ) ::
جلد 4 شماره 14 صفحات 47-60 برگشت به فهرست نسخه ها
Application of Artificial Neural Network and Fuzzy Inference System in Prediction of Breaking Wave Characteristics
چکیده:   (7742 مشاهده)
Wave height as well as water depth at the breaking point are two basic parameters which are necessary for studying coastal processes. In this study, the application of soft computing-based methods such as artificial neural network (ANN), fuzzy inference system (FIS), adaptive neuro fuzzy inference system (ANFIS) and semi-empirical models for prediction of these parameters are investigated. The data sets used in this study are published laboratory and field data obtained from wave breaking on plane and barred, impermeable slopes collected from 24 sources. The comparison of results reveals that, the ANN model is more accurate in predicting both breaking wave height and water depth at the breaking point compared to the other methods.
متن کامل [PDF 1021 kb]   (2426 دریافت)    
نوع مطالعه: بنیادی | موضوع مقاله: بیولوژی و بیوتکنولوژی دریا
دریافت: 1393/2/20 | پذیرش: 1393/2/20 | انتشار الکترونیک: 1393/2/20


XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Delavari E, Mostafa Gharabaghi A R, Chenaghlou M R. Application of Artificial Neural Network and Fuzzy Inference System in Prediction of Breaking Wave Characteristics. JPG. 2013; 4 (14) :47-60
URL: http://jpg.inio.ac.ir/article-1-231-fa.html

Application of Artificial Neural Network and Fuzzy Inference System in Prediction of Breaking Wave Characteristics. نشریه علمی پژوهشی خلیج فارس. 1392; 4 (14) :47-60

URL: http://jpg.inio.ac.ir/article-1-231-fa.html



دوره 4، شماره 14 - ( 7-1392 ) برگشت به فهرست نسخه ها
نشریه علمی پژوهشی خلیج فارس Journal of the Persian Gulf
Persian site map - English site map - Created in 0.08 seconds with 29 queries by YEKTAWEB 4241