[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
:: Volume 8, Issue 30 (12-2017) ::
JPG 2017, 8(30): 61-0 Back to browse issues page
Structure of sound speed in the Gulf of Aden
Leila Karimi, Mohammad Akbari Nasab *, Raheleh Shafiee Sarvestani, Morteza Morteza Ghorbanzadeh Ahangari
Assistant Professor of Marine Physics, Faculty of Marine and Oceanic Sciences, University of Mazandaran , m.akbarinasab@umz.ac.ir
Abstract:   (646 Views)
Abstract
The environmental characteristics of seawater affect acoustic wave propagation. Physical phenomena such as wind, tides, internal waves, temperature, and salinity variations, temperature and hydrodynamic fronts, and sea currents affect some of the acoustic wave frequencies. In order to simulate sound speed, Mackenzie empirical equation is employed and added to the MITgcm model to calculate sound speed in the domain as a function of temperature, salinity and depth. The model domain is in the range of 7° N-19°N and 44°E-57.1°E. Initial data (temperature, salinity, wind, net heat flux, evaporation and precipitation) were introduced to the model and numerical model was performed for 20 years. Comparison of temperature and salinity results with the measured data shows good agreement. Seasonal profiles of temperature, salinity and speed of sound were also investigated. The results showed that variations in the speed of sound are subject to temperature variations. Moreover, three water masses i.e. surface water mass, middle water mass, and Red Sea water mass are observed in the Gulf of Aden. The saline water of the Red Sea is at a depth of 300 to 800 meters, leading to inversion in the temperature and salinity profiles, resulting in the inversion of the speed of sound profile. In the range of 11.9°N and 44° E to 50°E, the rate of variations in the speed of sound from the surface to the depth of 250 m follow the temperature variations. Also, at depths of 300 to 800 m, due to the presence of the Red Sea water mass, the rate of variations in the speed of sound is due to temperature and salinity. Likewise, in the range of 45.8°E and from 12.8°N to 11°N, from the depth of 300 meters to the seabed, temperature variations were uniform, therefore the speed of sound is a function of temperature variation and salinity. At 11.9 °N latitude, two sound channels and at 45.8°E longitude, one sound channel was observed in spring.
Keywords: Calculating the speed of sound variations, MITgcm model, the Gulf of Aden, Red Sea water mass, sound channel, inversion
Full-Text [PDF 1346 kb]   (243 Downloads)    
Type of Study: Applied Research | Subject: Marine Biology & Biotechnology
Received: 2020/07/21 | Accepted: 2017/12/17 | ePublished: 2020/07/21
References
1. Ali, M. M., Jain, S.; Ramachandran, R. (2011). Effect of temperature and salinity on sound speed in the central Arabian Sea. The open Ocean Engineering Journal, 4(1).
2. Alistair, A.; Jean-Michel, C.; Stephanie, D.; Constantinos, E.; David, F.; Gael, F.; ....; Oliver, J. (2018). MITgcm User Manual. online.
3. Al Saafani, M. A.; Shenoi, S. S. C. (2007). Water masses in the Gulf of Aden. Journal of oceanography, 63(1), 1-14. [DOI:10.1007/s10872-007-0001-1]
4. Beal, L. M., Ffield, A.; Gordon, A. L. (2000). Spreading of Red Sea overflow waters in the Indian Ocean. Journal of Geophysical Research: Oceans, 105(C4), 8549-8564. [DOI:10.1029/1999JC900306]
5. Hundsdorfer, W..; Trompert, R. A., 1994. Method of lines and direct discretization: a comparison for linear advection. Applied Numerical Mathematics, 13(6): 469-490. [DOI:10.1016/0168-9274(94)90009-4]
6. Khimitsa, V. A., 1968. The hydrological structure of the waters of the Gulf of Aden. Journal of Oceanology, 8: 318-322.
7. Mohammed, E. E. E.,1997. On the variability, potential energy, potential temperature, salinity and currents in NW Indian Ocean and Gulf of Aden. JKAU Marine Montgomery, 8: 47-65. [DOI:10.4197/mar.8-1.3]
8. Morcos, S. A.; Abdallah, A. M. (2012). Oceanography of the Gulf of Aden: John Murray-Mabahiss Expedition 1933-1934 Revisited. The Egyptian Journal of Aquatic Research, 38(2), 77-91. [DOI:10.1016/j.ejar.2012.12.001]
9. Nasser, G. A., 1992. Seasonal changes in the water characteristics of upper 1000 m in the northern Gulf of Aden. Scientific Investigation of the Gulf of Aden. Marine Science and Resources Reserch, 2.
10. Piechura, J.; Sobaih, O. A. G., 1986. Oceanographic conditions of the Gulf of Aden. Science Investigation Gulf Aden. Series A: Oceanography, 2.
11. Saafani, A.; Yahya, M. A. (2008). Physical oceanography of the Gulf of Aden (Doctoral dissertation, Goa University).
12. Sadrinasab, M.; Kenarkohi, K. (2009). Three-dimensional numerical modelling study of sound speed in the Persian Gulf. Asian Journal of Applied Sciences, 2(3), 232-239. [DOI:10.3923/ajaps.2009.232.239]
13. Shafiee Sarvestani.R; Sadrinasab,M; Akbarinasab,M. (2018). Tracing Water Masses in the Gulf of Aden Using a Passive Tracer. Journal of oceanography,9(35): 49-60. [DOI:10.29252/JOC.2018.9.1317]
14. Ali, M. M., Jain, S.; Ramachandran, R. (2011). Effect of temperature and salinity on sound speed in the central Arabian Sea. The open Ocean Engineering Journal, 4(1).
15. Alistair, A.; Jean-Michel, C.; Stephanie, D.; Constantinos, E.; David, F.; Gael, F.; ....; Oliver, J. (2018). MITgcm User Manual. online.
16. Al Saafani, M. A.; Shenoi, S. S. C. (2007). Water masses in the Gulf of Aden. Journal of oceanography, 63(1), 1-14. [DOI:10.1007/s10872-007-0001-1]
17. Beal, L. M., Ffield, A.; Gordon, A. L. (2000). Spreading of Red Sea overflow waters in the Indian Ocean. Journal of Geophysical Research: Oceans, 105(C4), 8549-8564. [DOI:10.1029/1999JC900306]
18. Hundsdorfer, W..; Trompert, R. A., 1994. Method of lines and direct discretization: a comparison for linear advection. Applied Numerical Mathematics, 13(6): 469-490. [DOI:10.1016/0168-9274(94)90009-4]
19. Khimitsa, V. A., 1968. The hydrological structure of the waters of the Gulf of Aden. Journal of Oceanology, 8: 318-322.
20. Mohammed, E. E. E.,1997. On the variability, potential energy, potential temperature, salinity and currents in NW Indian Ocean and Gulf of Aden. JKAU Marine Montgomery, 8: 47-65. [DOI:10.4197/mar.8-1.3]
21. Morcos, S. A.; Abdallah, A. M. (2012). Oceanography of the Gulf of Aden: John Murray-Mabahiss Expedition 1933-1934 Revisited. The Egyptian Journal of Aquatic Research, 38(2), 77-91. [DOI:10.1016/j.ejar.2012.12.001]
22. Nasser, G. A., 1992. Seasonal changes in the water characteristics of upper 1000 m in the northern Gulf of Aden. Scientific Investigation of the Gulf of Aden. Marine Science and Resources Reserch, 2.
23. Piechura, J.; Sobaih, O. A. G., 1986. Oceanographic conditions of the Gulf of Aden. Science Investigation Gulf Aden. Series A: Oceanography, 2.
24. Saafani, A.; Yahya, M. A. (2008). Physical oceanography of the Gulf of Aden (Doctoral dissertation, Goa University).
25. Sadrinasab, M.; Kenarkohi, K. (2009). Three-dimensional numerical modelling study of sound speed in the Persian Gulf. Asian Journal of Applied Sciences, 2(3), 232-239. [DOI:10.3923/ajaps.2009.232.239]
26. Shafiee Sarvestani.R; Sadrinasab,M; Akbarinasab,M. (2018). Tracing Water Masses in the Gulf of Aden Using a Passive Tracer. Journal of oceanography,9(35): 49-60. [DOI:10.29252/JOC.2018.9.1317]
Send email to the article author


XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Karimi L, Akbari Nasab M, Shafiee Sarvestani R, Morteza Ghorbanzadeh Ahangari M. Structure of sound speed in the Gulf of Aden. JPG. 2017; 8 (30) :61-0
URL: http://jpg.inio.ac.ir/article-1-591-en.html


Volume 8, Issue 30 (12-2017) Back to browse issues page
نشریه علمی پژوهشی خلیج فارس Journal of the Persian Gulf
Persian site map - English site map - Created in 0.09 seconds with 28 queries by YEKTAWEB 4247