Investigation on the sloshing effect in a 2D tank under harmonic excitation using Smoothed Particle Hydrodynamics (SPH) and Finite Volume method (FVM)

Soheil Radfar¹, Amir Taherkhani*,², Hassan Akbari³

¹- PhD Candidate, Tarbiat Modares University; soheil.radfar@modares.ac.ir
²- MSc Student, Tarbiat Modares University; amir.taherkhani@modares.ac.ir
³- Assistant Professor, Tarbiat Modares University; akbari.h@modares.ac.ir

Received: November 2016 Accepted: March 2017

© 2017 Journal of the Persian Gulf. All rights reserved.

Abstract
Sloshing describes liquids motion in the semi-filled tanks, and exerts dynamic loading on its walls. This effect is of great importance in a number of dynamic systems e.g. aerospace vehicles, road tankers, liquefied natural gas carriers, elevated water towers and petroleum cylindrical tanks. Pressures insert impacts which are important for structural strength evaluation and its correct assessment is challenging for designers because of high share of nonlinear effects, complicated changes of free surface, strong impact phenomenon and air trapping effects. Since, numerical capabilities of the Smoothed Particle Hydrodynamics (SPH) method allow proper simulation of the fluid and/or the free surface we used it to investigate the behavior of a water tank exposed to a harmonic excitation. Besides, a Finite Volume (FV) analysis was employed using FLOW3D software, for the further comparison of the results from the SPH method. To assess the results, temporal variations of the impact pressure at the specific height of the tank wall is compared against the results from the experiment and also, the Finite Difference (FD) method. The comparison showed strong correlation of SPH results with the experimental ones. But, FLOW3D is not sufficiently capable of estimating the trend of pressure time history especially near the extremes.

Keywords: Sloshing, FDM, FVM, SPH

1. Introduction

Sloshing is the oscillation phenomenon caused by the motion of the tank. This effect is of great importance in a number of dynamic systems e.g. aerospace vehicles, road tankers, liquefied natural gas carriers, elevated water towers and petroleum cylindrical tanks. For example, in the transformation of a liquid cargo, sloshing affects the stability of the carrier and may lead to structural fatigue and deterioration. Therefore, it is necessary to diminish the sloshing effect before causing the large amplitude resonance. As such, this phenomenon was the subject of many analytical, numerical and experimental

Combined numerical and experimental study has also been performed in this regard. Akyildiz and Unal (2005) investigated pressure variations in both baffled- and unbaffled tank [15]. Pal et al. (1999) also studied 2D sloshing numerically and experimentally [16]. In their study, numerical results for sloshing-induced height of amplitudes and frequencies of different excitations, compared against experimental results. Of recent studies, Xu et al. (2017) studied the sloshing effect in membrane-type LNG tanks [17]. Storey (2016) investigated the sloshing of liquid nitrogen in spherical tanks, numerically, analytically and experimentally [18].

In this paper, temporal variations of impact pressure in a specific height of a 2D tank wall subjected to harmonic rotational motion was investigated using SPH method and compared with the results of experiments, FVM and FDM. In this regard, in Section 2, basics of SPH method has been discussed. In Section 3, experimental work of Akyildiz and Unal (2005) is presented. The FDM study of Akyildiz (2012) is presented in Section 4. Finally, the results from these four categories are compared against each other.

2. Material and Methods

2.1. Smoothed Particle Hydrodynamics method

SPH method, introduced by Lucy and Monagan in 1970s, is based on Lagrangian particles method. In the SPH, for a specific flow variable in an arbitrary point with position vector \(r \) and neighboring vector \(r' \), Kernel approximation is as follows:

\[
\langle f(x) \rangle = \int_D f(x') W(x - x', h) dx'
\]

Where, \(W \) is Kernel function, \(h \) is smoothing length or influence length of \(W \) function, and \(D \) is the integral volume which \(x \) encompasses. Due to high numerical stability and being smooth, in this study, 5th order Vendland Kernel function is used. It is formulated in Eq. (2).

\[
W(r, h) = \alpha_n e^{-q r}
\]

Where, \(r = |x - x'| \), and \(q = r / h \). In the equation,
\(\alpha_d \) is \(7/4\pi h^2 \) for 2D models.

In order to solve the problem, the computational domain has to be discretized on several particles (see Figure 1). Each one of the particles represents a limited volume of fluid. Therefore, Eq. (1) can be rewritten as,

\[
\left\langle f \left(x_i \right) \right\rangle = \sum_{j=1}^{N} f \left(x_j \right) W \left(x_i - x_j, h_{ij} \right) \Delta V_j
\]

(3)

Here, \(\Delta V_j = m_j / \rho_j \) is the corresponding volume of fluid of the particle \(j \).

\[V (r) \]

\[\text{kernel} \]

\[\text{particle of interest} \]

\[\text{neighbour} \]

\[\text{particle} \]

\[\text{Fig 1: Kernel approximation in a smoothed neighbor} \]

Using this formulation, gradient of a field function can be presented as,

\[
\left\langle \nabla f \left(x_i \right) \right\rangle = \frac{1}{\rho_i} \sum_{j=1}^{N} m_j \left[f \left(x_j \right) - f \left(x_i \right) \right] \nabla W_{ij}
\]

(4)

where, the gradient of Kernel function is defined as,

\[
\nabla W_{ij} = \frac{x_j - x_i}{r_{ij}} \frac{\partial W_{ij}}{\partial r_{ij}} = \frac{x_{ij}}{r_{ij}} \frac{\partial W_{ij}}{\partial r_{ij}}
\]

(5)

Internal forces are calculated based on mass and momentum conservation equations (i.e. Navier-Stokes equations):

\[
\frac{D \rho}{Dt} = -\rho \nabla \nu
\]

(6)

\[
\frac{D \nu}{Dt} = g + \frac{1}{\rho} \nabla \sigma
\]

(7)

In the mass conservation equation (Eq. (6)), fluid is assumed to be weekly compressible in the entire domain. In the continuity equation, \(\sigma \) is stress tensor and is defined as follows:

\[
\sigma = -p \delta + \tau = -p \delta + \mu \varepsilon
\]

(8)

Where, stress rate tensor \(\varepsilon \) is formulated as,

\[
\varepsilon^{lm} = \left(\frac{\partial \nu^m}{\partial x^l} + \frac{\partial \nu^l}{\partial x^m} \right) - \frac{2}{3} (\nabla \nu) \delta^{lm}
\]

(9)

Here, \(\delta \) is Kronecker Delta function and is,

\[
\delta^{lm} = \begin{cases}
1 & l = m \\
0 & l \neq m
\end{cases}
\]

(10)

There are various forms of mass conservation equation in discrete approximation of smoothed particles. In the current paper, the \(i \) particle is the reference and the \(j \) particle represents the particles within the domain. Hence, discrete form of mass conservation equation is exerted as follows,

\[
\frac{D \rho_i}{Dt} = -\sum_{j=1}^{N} m_j \nu_{ij} \nabla W_{ij}, \quad \nu_{ij} = (v_i - v_j)
\]

(11)

Navier-Stokes equation can be approximated as,

\[
\frac{D \nu_i}{Dt} = -\sum_{j=1}^{N} m_j \left(\frac{\sigma_j + \sigma_i}{\rho_j \rho_i} \right) \nabla W_{ij}
\]

(12)

Where, general stress-strain tensor is calculated as follows:

\[
\sigma_{ij} = \frac{\partial \varepsilon_{ij}}{\partial t} + \nu \delta_{ij}
\]
\[\sigma_i = p_i \delta + \mu_i \varepsilon_i \]
\[\varepsilon_i^{lm} = \sum_{j=1}^{N} \frac{m_{ij} \dot{V}_y^j}{\rho_j} \frac{\partial W_{ij}^y}{\partial x_i^m} + \sum_{j=1}^{N} \frac{m_{ij} \dot{V}_y^j}{\rho_j} \frac{\partial W_{ij}^y}{\partial x_i^m} - \frac{2}{3} \left(\sum_{j=1}^{N} \frac{m_{ij} \dot{V}_y^j}{\rho_j} \nabla W_{ij} \right) \delta^{lm} \] (13)

In this study, effect of viscous term is neglected; hence, Euler equations may be used. These equations have been successfully employed for sloshing simulation by Souto-Iglesias et al. (2006) [22].

Besides, equation of state for weekly compressible fluid is defined as Eq. (14) and this equation is solved to find pressure of each particle, which density was previously calculated in Eq. (11).

\[p = \frac{\rho_0^2 \gamma}{\gamma - 1} \left[\left(\frac{\rho}{\rho_0} \right) \gamma - 1 \right] \] (14)

Where, power coefficient \(\gamma \) is adopted 7 according to Batchelor (2000) proposal [23].

2.2. Experimental Study

In this paper, experimental work of Akyildiz and Unal (2005) is used for controlling the numerical result. They experimentally investigated the 3D effects of liquid sloshing loading. Since, the rotation was around the perpendicular axis, the problem can be investigated in 2D. Figure 2 shows the tank geometry and the locations of transducers.

Here, the authors just compared the results of wall pressure in the location T1, when tank is filled to half of its total height. Tank motion is rotationally harmonic around the perpendicular axis. The harmonic motion obeys the sinusoidal form \(\theta_s = \theta_0 \sin(\omega t) \), where \(\theta_0 \) and \(\omega \) are amplitude and frequency of rotation, respectively. In the present study, these values are 8 degrees and 2 rad/s, respectively. Figure 3 shows the time history of the roll amplitude (\(\theta_0 \)).

2.3. Finite Difference Study

Akyildiz (2012) used a numerical scheme based on volume of fluid technic for investigation of nonlinear liquid sloshing behavior [19]. In his study, full Navier-Stokes equations are solved using finite difference technics in the moving coordinate system. Effects of turbulence and wave breaking are neglected in his study.
2.4. Finite Volume Study

For further investigations, a FV analysis has been performed using FLOW3D commercial software. FLOW3D uses FVM for the numerical solution of fluid governing equation and simulates free surface of the fluid using Volume of Fluid (VOF) method. Momentum and continuity equations are the governing equations, here. Eq. (15) shows the continuity equation:

\[\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{U}) = 0 \]

(15)

Where \(\rho \) is fluid density and \(\vec{U} \) is the vector of fluid velocity. Since, the fluid is assumed to be incompressible, fluid density is constant during the runtime. Therefore, the above equation can be rewritten as,

\[\nabla \cdot \vec{U} = 0 \]

(16)

Besides, the governing equations of fluid motion for velocity components along x, y and z are Navier-Stokes equations:

\[\frac{\partial \vec{U}}{\partial t} + \vec{U} \cdot \nabla \vec{U} = -\frac{1}{\rho} \nabla P + \vec{F} \]

(17)

Where, \(\nu \) is the kinematic viscosity of fluid, \(\rho \) is the fluid density, \(P \) is the fluid pressure and \(\vec{F} \) is the vector of external forces acting on the fluid.

In the modelling of sloshing phenomenon using FLOW3D by performing mesh independency analysis, the CFD domain is finally divided into 10,000 uniform computational cells.

3. Results and Discussion

To obtain appropriate results in SPH modelling, the parameters are valued based on Table 1. In this simulation, distance between the particles is adopted 0.002 m. Total number of fluid and boundary particles are 70686 and 1542, respectively. The run time of the simulation is approximately 71 minutes. The model is implemented within the open source code DualSPHysics4 v4.0.055 and the system had the graphic card of NVIDIA GTX 750 Ti with five cores and 1.1 GHz.

<table>
<thead>
<tr>
<th>Temporal integration scheme</th>
<th>Verlet algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel function</td>
<td>Wendland</td>
</tr>
<tr>
<td>Viscous behavior</td>
<td>Artificial viscosity</td>
</tr>
<tr>
<td>Equation of state</td>
<td>Tait equation</td>
</tr>
</tbody>
</table>

Figure 4 shows contours of velocity magnitude in four time steps. With leftward motion of the tank from the stable position; the liquid within the tank compresses the left wall and thus, the pressure of the wall increases. Reaching the maximum roll motion (here, 8 degrees), tank velocity becomes zero and it starts rolling reverse. At the time, the liquid has still leftward motion. This causes the sloshing wave to hit the opposite wall. Therefore, the sloshing wave starts rightward motion. After reaching the wave to the right wall and hitting to it, the leftward motion of the tank is started. Generally, in the beginning of rolling motion, there is a specific phase difference between tank motion and wave sloshing. However, due to forced rolling motion of the tank, gradually, motion of the sloshing wave and the tank is being coordinated.
Fig 4: Contours of velocity magnitudes for two methods;
(a) SPH and (b) FVM
Figure 5 shows the comparison between the results of four above mentioned methods, for pressure variations of the left wall at the height 6 cm from the tank floor (T1 position in Figure 2). As can be seen, local maximums of pressure time history in the SPH method, is underestimated comparing with experiments; but, this method has significantly good correlation with benchmark results in the local minimums. For the simulation with FLOW3D, although, the results are acceptable, it is not sufficiently capable of estimating the trend of time history, especially near the extremes. Therefore, further study is necessary to calibrate the settings of the software to obtain more reasonable correlation with experimental results.

References

https://doi.org/10.1016/S0141-1187(00)00021-3

https://doi.org/10.1016/S0029-8018(01)00085-3

https://doi.org/10.1016/j.oceaneng.2004.08.001

https://doi.org/10.1016/j.apor.2006.01.002

https://doi.org/10.1017/S0022112099007569

https://doi.org/10.1017/S0022112000003311

https://doi.org/10.1016/j.oceaneng.2007.05.004

https://doi.org/10.1016/j.oceaneng.2004.11.006

https://doi.org/10.1061/(ASCE)0733-9399(1999)125:4(491)

https://doi.org/10.1260/1750-9548.9.3.209

https://doi.org/10.1016/j.jsv.2011.08.002

https://doi.org/10.1146/annurev.aa.30.090192.002551

https://doi.org/10.1016/j.cageo.2012.02.029

Abramson, H. N., The dynamic behavior of liquids
in moving containers, with applications to space vehicle technology, 1966.

J. Xu, J. Wang, and M. Souli, "SPH and ALE formulations for sloshing tank analysis," The
https://doi.org/10.1260/1750-9548.9.3.209

https://doi.org/10.1016/j.jsv.2011.08.002

https://doi.org/10.1146/annurev.aa.30.090192.002551

https://doi.org/10.1016/j.cageo.2012.02.029

https://doi.org/10.1017/CBO9780511800955